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1. Introduction

Hyperon semileptonic decays are interesting for various reasons as they give information

on the weak and the strong interactions in the light quark sector of QCD (for some recent

experimental determinations, see e.g. refs. [1 – 5]). The transition matrix elements are

parameterized in terms of three vector current and three axial current form factors. Of

these, the so-called vector form factor at zero momentum transfer, f1(0), plays a particular

role. Hyperon decay data allow one to extract |Vus · f1(0)|2, where Vus is one entry of the

Cabibbo-Kobayashi-Maskawa matrix. Deviations from SU(3) symmetry are expected to

be very small because the Ademollo-Gatto theorem protects f1(0) from the leading SU(3)

breaking corrections [6]. Therefore, precise calculations of the hadronic corrections to f1(0)

appear feasible, resulting eventually in an accurate extraction of Vus from hyperon decays

(for a recent analysis of SU(3) breaking effects in hyperon decays, see ref. [7] and references

therein).

In this paper, we will concentrate on the leading moments of the vector current form

factors in semileptonic hyperon decays. There are two privileged frameworks for calculating
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the QCD corrections to these form factors, namely lattice QCD and chiral perturbation

theory. First exploratory lattice studies are just becoming available, see refs. [8 – 11]. The

application of chiral perturbation theory to the semileptonic hyperon form factors has a

longer history, see refs. [12 – 15], with partly contradictory or incomplete results: ref. [12]

neglects the mass splitting in the baryon ground state octet, while ref. [13] is erroneous with

respect to the signs of certain contributions and misses some 1/m corrections. Ref. [14] is

purely confined to the leading-loop contributions. In ref. [15], in addition the contributions

of dynamical spin-3/2 decuplet intermediate states were considered in what is known as

the small-scale expansion [16] generalization of chiral perturbation theory with baryons,

which sometimes leads to an improved convergence behavior of the low-energy expansion

(see e.g. refs. [17 – 19]).

Except for the first of these studies, heavy-baryon chiral perturbation theory was

utilized. Recently, a method was established to perform calculations in baryon chiral per-

turbation theory (BχPT) in a manifestly covariant way [20] (for a recent review discussing

also different formulations of covariant BχPT see ref. [21]). It is therefore timely to revisit

the calculation of the hyperon vector form factors in that framework. In what follows, we

perform the full one-loop O(p4) calculation in covariant BχPT of hyperon decays, which

may serve as a check of previous results [15] in a different regularization scheme, but in

addition provides partial higher-order corrections useful for a study of the convergence

behavior of the chiral series. In doing so, we revert to BχPT without dynamical decuplet

degrees of freedom, which in the light of surprisingly big effects found in ref. [15] may be

considered problematic. However, we want to concentrate on the resummation of higher-

order loop effects and therefore defer an even more involved calculation of the decuplet

effects in infrared regularization to a later study.

In addition to the already mentioned vector form factor at zero momentum transfer,

we also calculate further observables such as weak radii and the weak anomalous magnetic

moments. Those observables have become measurable nowadays [2, 3], and more results

are expected from high-energy colliders in the future.

The paper is organized as follows. We define the vector form factors and explain

their role in semileptonic hyperon decays in section 2. In section 3 we present the chiral

Lagrangians necessary for our calculation and discuss the various low-energy constants. In

section 4 we present our results for the form factor f1 at vanishing momentum transfer,

confirming findings of ref. [15], and discussing partial higher-order corrections. As the

convergence behavior of SU(3) BχPT is known to be problematic, we investigate various

chiral extrapolations in section 4.3. In sections 5 and 6 we discuss the weak Dirac radii and

the weak anomalous magnetic moments of semileptonic hyperon decays. The conclusions

are given in section 7.

2. Vector form factors

The structure of ground state hyperon decays as probed by a charged strangeness-changing
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weak SU(3) vector current V µ = Vus ūγµs is parameterized in term of three form factors,

〈B′(p2)|V µ|B(p1)〉 = Vus ū(p2)

[

γµ fBB′

1 (t) +
iσµνqν

m1
fBB′

2 (t) +
qµ

m1
fBB′

3 (t)

]

u(p1) , (2.1)

with the momentum transfer qµ = pµ
2 − pµ

1 , t = q2, and σµν = i[γµ, γν ]/2. m1 (m2) is

the mass of the initial (final) state baryon. f1 is sometimes referred to as the vector form

factor, f2 as the weak magnetism form factor, and f3 the induced scalar form factor. The

expansion of these form factors at small momentum transfers defines slope parameters λi

or, in analogy to electromagnetic form factors, radii,

fi(t) = fi(0)
{

1 +
1

6
〈r2

i 〉t + O(t2)
}

= fi(0)

{

1 + λi
t

m2
1

+ O(t2)

}

, (2.2)

such that λi = m2
1〈r2

i 〉/6.
We consider the following strangeness-changing (s → u) decays in the ground-state

baryon octet

Λ → p ℓ−ν̄ℓ , Σ0 → p ℓ−ν̄ℓ , Σ− → n ℓ−ν̄ℓ , Ξ− → Λ ℓ−ν̄ℓ , Ξ− → Σ0ℓ−ν̄ℓ , Ξ0 → Σ+ℓ−ν̄ℓ ,

(2.3)

where the lepton pair ℓ−ν̄ℓ can be electronic or muonic.

Vector (V ) and axial vector (A) current contributions do not interfere in the total

decay rate Γ = ΓA + ΓV , and ΓV is related to the form factors eq. (2.1) by [22]

ΓV = G2
F |Vus|2

∆m5

60π3

{[

1 − 3

2
β +

6

7
β2

(

1 +
1

9
m2

1〈r2
1〉

)

]

|f1(0)|2

+
6

7
β2

(

Re f1(0)f2(0)
∗ +

2

3
|f2(0)|2

)

+ O
(

β3,m2
ℓ

)

}

, (2.4)

where β = ∆m/m1 = (m1−m2)/m1, GF is the Fermi constant, and mℓ denotes the lepton

mass, ℓ = e, µ. We note that the induced scalar form factor f3 is suppressed by m2
ℓ and

can safely be neglected at least in the electron channel; we will not consider f3 any further

in this work. The expansion in the small quantity β in eq. (2.4) demonstrates that the

decay width is dominated by f1(0), and that subleading contributions are given by the

Dirac radius 〈r2
1〉 as well as by the weak magnetism form factor at vanishing momentum

transfer, f2(0). Both of these subleading moments will hence be discussed in the following.

In the SU(3) limit the vector form factors at zero momentum transfer f1(0) are fixed

by the conservation of the SU(3)V charge. The Ademollo-Gatto theorem [6] asserts that

SU(3) breaking effects only start at second order in the symmetry breaking term (ms−m̂),

f1(0) = f
SU(3)
1 (0) + O

(

(ms − m̂)2
)

, (2.5)

with the average small quark mass m̂ = (mu + md)/2. f
SU(3)
1 (0) ≡ gV are the vector

couplings in the symmetry limit, which read:

gΛp
V =−

√

3

2
, gΣ0p

V =− 1√
2
, gΣ−n

V =−1, gΞ−Λ
V =

√

3

2
, gΞ−Σ0

V =
1√
2
, gΞ0Σ+

V =1. (2.6)
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Since isospin breaking effects are much smaller than SU(3) breaking effects (md − mu ≪
ms − m̂), we neglect the former. Isospin symmetry then relates the transitions Σ0 → p

and Σ− → n, as well as Ξ− → Σ0 and Ξ0 → Σ+ in a trivial manner: when dividing by

the overall vector charge gV , the corresponding form factors are equal, hence the number

of independent processes reduces from six to four.

3. Chiral Lagrangians

We will employ chiral perturbation theory (χPT) [23 – 25] as the effective theory in the

low-energy region of QCD (for a recent review see e.g. ref. [26]).

The chiral effective pseudo-Goldstone boson Lagrangian to leading order is given by

L(2)
φ =

F 2
π

4
〈uµuµ + χ+〉 , (3.1)

where uµ = iu†∇µUu†, u2 = U collects the Goldstone boson fields in the usual manner,

and χ+ = uχ†u+ u†χu†, χ = 2B diag(mu, ud,ms)+ · · · incorporates the quark masses. As

the notation suggests, we can identify the Lagrangian’s normalization constant with the

pion decay constant for the purpose of this study, Fπ = 92.4 MeV.

For the effective meson-baryon Lagrangian we employ basis and notation of refs. [27, 28]

(see the related work in ref. [29]). At leading order, it reads

L(1)
φB = 〈B̄

(

iγµ[Dµ, B] − mB
)

〉 +
D/F

2
〈B̄γµγ5[uµ, B]±〉 , (3.2)

where B is the matrix of the ground state octet baryon fields, m is the average octet mass

and D and F are the axial vector coupling constants (strictly speaking, the parameters

appearing in the Lagrangian refer to the chiral SU(3) limit). Their numerical values can be

extracted from hyperon decays and obey the SU(2) constraint for the axial vector coupling

gA = D + F = 1.26; we use D = 0.80, F = 0.46. The following terms from the baryon-

meson Lagrangian at second order are needed to generate the baryon mass splittings at

leading order, as well as the coupling of (traceless) vector currents:

L(2)
φB = bD/F

〈

B̄[χ+, B]±
〉

+ i b5/6

〈

B̄σµν
[

[uµ, uν ], B
]

∓

〉

(3.3)

+i b7〈B̄uµ〉σµν〈uνB〉 + b12/13

〈

B̄σµν [F+
µν , B]∓

〉

.

We use the numerical values b5 = 0.23 GeV−1 , b6 = 0.62 GeV−1 , b7 = 0.68 GeV−1

obtained from resonance saturation estimates [30, 31]. To the order we consider here, the

effects of bD/F can always be re-expressed in terms of the physical baryon masses, for which

we employ mN = 0.939 GeV, mΛ = 1.116 GeV, mΣ = 1.193 GeV, and mΞ = 1.318 GeV.

In addition, we will occasionally refer to an average octet baryon mass m = 1.151 GeV.

Finally, b12/13 can at leading order be determined from the anomalous magnetic moments

of proton and neutron.

Only two terms, entering the Dirac radii of the baryons, are needed from the third

order Lagrangian,

L(3)
φB = d51/52 〈B̄γµ

[

[Dν , F+
µν ], B

]

∓
〉 . (3.4)
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Figure 1: Feynman diagrams contributing to the vector current form factors up to fourth order.

Solid, dashed, and wiggly lines refer to baryons, Goldstone bosons, and the weak vector source,

respectively. Vertices denoted by a heavy dot/square/diamond refer to insertions from the sec-

ond/third/fourth order chiral Lagrangian, respectively. Diagrams contributing via wave function

renormalization only are not shown. Note that the masses appearing in the various propagators

differ in the initial and final states and may also be different for the intermediate states.

d51/52 can be determined from the Dirac (or electric) radii of the nucleons [31, 32]. At

fourth order seven couplings proportional to a quark mass insertion contributing to the

anomalous magnetic moments are of relevance:

L(4)
φB = α1/2

〈

B̄σµν
(

[

[F+
µν , B], χ+

]

∓
+

[

F+
µν , [B,χ+]∓

]

)

〉

+ α3/4

〈

B̄σµν
(

[

{F+
µν , B}, χ+

]

∓
+

{

F+
µν , [B,χ+]∓

}

)

〉

+ α5 〈B̄σµνB〉〈F+
µνχ+〉 + α6/7

〈

B̄σµν [F+
µν , B]∓

〉

〈χ+〉 . (3.5)

The term proportional to α5 vanishes for off-diagonal currents, and hence for weak decay

matrix elements, while α6/7 account for a quark mass renormalization of the magnetic

couplings b12/13. The operators scaling with α1−5 incorporate explicit breaking of SU(3)

symmetry in the anomalous magnetic moments and have to be fitted to the baryon octet’s

anomalous magnetic moments [30, 31]. L(4)
φB also contains two additional counterterms

contributing to the magnetic (Pauli) radii [31], which however we will not consider here.

4. The Dirac form factor at zero momentum transfer

We will calculate the loop diagrams in a manifestly covariant form, using infrared regular-

ization [20]; for the diagrams that are to be considered, see figure 1.

In comparison to a heavy-baryon calculation to subleading one-loop order [15], there are

far fewer diagrams to be considered, as all the 1/m corrections and baryon mass splittings in

the baryon propagators are automatically resummed to all orders. On the other hand, the

closed forms for the full loop results are much more involved and cannot be displayed here

completely. A re-expansion of the covariant loop diagrams in strict chiral power counting

– 5 –
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B → B′ γπ
BB′ γη

BB′

Λ → N 9D2 + 6DF + 9F 2 (D + 3F )2

Σ → N D2 − 18DF + 9F 2 9(D − F )2

Ξ → Λ 9D2 − 6DF + 9F 2 (D − 3F )2

Ξ → Σ D2 + 18DF + 9F 2 9(D + F )2

Table 1: Coefficients for eq. (4.2).

however reproduces the heavy-baryon results and leads to simplified expressions that are

useful for comparison with the literature.

The Ademollo-Gatto theorem results in the absence of local contributions up to fourth

chiral order, therefore our analysis up that order is free from low-energy constants. We

will parameterize the expanded corrections in analogy to ref. [15],

f1(0) = gV

[

1 + δ(2) +
(

δ(3,1/m) + δ(3,δm)
)

+ δ(4∗) + · · ·
]

. (4.1)

δ(2) is the leading SU(3)-breaking loop correction of order p3. The corrections of order p4

are divided into two classes, pure 1/m recoil corrections δ(3,1/m) and terms proportional

to the baryon mass splitting denoted by δ(3,δm). As an indicator for the size of higher-

order terms, we can also extract partial (i.e. incomplete) corrections of order p5 from the

covariant amplitudes, which we denote by δ(4∗) (the asterisk serving as a reminder that

there are additional, e.g. two-loop, corrections at that order).

4.1 Heavy-baryon results up to order p4

Both self-energy like diagrams and tadpoles contribute to f1(0) at this order, the former

scaling with the axial couplings D and F squared, the latter coming with completely fixed

coefficients. The results read:

δ
(2)
BB′ + δ

(3,1/m)
BB′ = 3

(

H
(1)
πK + H

(1)
ηK

)

+ γπ
BB′

(

H
(1)
πK + H

(2)
πK

)

+ γη
BB′

(

H
(1)
ηK + H

(2)
ηK

)

, (4.2)

where the coefficients γ
π/η
BB′ are shown in table 1, and the functions H

(1)
ab , H

(2)
ab are given by

H
(1)
ab =

1

(8πFπ)2

{

M2
aM2

b

M2
b − M2

a

log
Mb

Ma
− 1

4

(

M2
a + M2

b

)

}

, (4.3)

H
(2)
ab =

π

6m(8πFπ)2
(Mb − Ma)

2

Ma + Mb

(

M2
a + 3MaMb + M2

b

)

. (4.4)

The corrections eqs. (4.3), (4.4) satisfy the Ademollo-Gatto theorem, and have been

given before in the literature [12, 14, 15]. As already stated in refs. [33, 34], the quadratic

symmetry breaking term (ms − m̂)2 comes with coefficients that scale with inverse powers

– 6 –
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of the quark masses, therefore allowing for (non-analytic) symmetry-breaking corrections

at lower orders than what local (analytic) terms can provide.

The baryon mass splitting corrections are somewhat more complicated, but can still

be brought into a rather compact form,

δ
(3,δm)
ΛN = (D + F )(D + 3F )HΛN

Kπ (mN ) − 1

3
(D2 − 9F 2)HΛN

Kη (mN )

+
2

3
D(D + 3F )HΛN

ηK (mΛ) + 2D(D − F )HΛN
πK (mΣ) ,

δ
(3,δm)
ΣN = (D2 − F 2)HΣN

Kπ (mN ) + (D − F )(D − 3F )HΣN
Kη (mN )

−2

3
D(D + 3F )HΣN

πK (mΛ) − 4(D − F )F HΣN
πK (mΣ) + 2D(D − F )HΣN

ηK (mΣ) ,

δ
(3,δm)
ΞΛ =

2

3
D(D − 3F )HΞΛ

Kη(mΛ) + (D − F )(D − 3F )HΞΛ
πK(mΞ)

−1

3
(D2 − 9F 2)HΞΛ

ηK (mΞ) + 2D(D + F )HΞΛ
Kπ(mΣ) ,

δ
(3,δm)
ΞΣ = −2

3
D(D − 3F )HΞΣ

Kπ(mΛ) + (D2 − F 2)HΞΣ
πK(mΞ) + 4(D + F )F HΞΣ

Kπ(mΣ)

+(D + F )(D + 3F )HΞΣ
ηK (mΞ) + 2D(D + F )HΞΣ

Kη(mΣ) , (4.5)

with

HAB
ab (m) =

π

3(8πFπ)2
Mb − Ma

(Ma + Mb)2

{

(mB − mA)(M2
a + 3MaMb + M2

b )

+3(m − mA)M2
b − 3(m − mB)M2

a

}

, (4.6)

satisfying the Ademollo-Gatto theorem. Eq. (4.5) agrees with the results given in ref. [15].

4.2 Order p5 corrections and numerical results

A useful benefit of the infrared regularization method is that a certain, well-defined subset

of higher-order contributions, stemming from all possible 1/m corrections (including, in our

case, those due to the shift of the baryon masses away from their SU(3) symmetry limit)

in the baryon propagators, are automatically resummed. In the case of the hyperon decay

form factors, such higher-order corrections are far from being complete, but comprise a

complete set of terms, namely those quadratic in the axial couplings D and F . As a

downside, these higher-order terms are in general not finite, and even after removing the

infinities by hand, display some subleading renormalization scale dependence. We try to

reflect the resulting inherent uncertainties by varying the scale between Mρ = 0.770 GeV

and mΞ = 1.318 GeV (with a central scale chosen at 1 GeV). Here we evaluate both the

partial next-to-next-to-leading order δ(4∗) and the completely resummed covariant loop

results numerically. The analytic expressions are rather cumbersome and can be obtained

in ref. [35].

In table 2 we give the numerical results for each contribution defined in eq. (4.1) (δ(2),

δ(3,1/m), δ(3,δm), δ(4∗)) separately, the results summed up to given chiral orders O(p3)–O(p5)

(δ(2), Sum(3), Sum(4)) and for the complete covariant expressions (Cov). Bands for the

variation of the renormalization scale as detailed above are given for δ(4∗), Sum(4), and

– 7 –
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Channel δ(2) δ(3,1/m) δ(3,δm) δ(4∗) Sum(3) Sum(4) Cov

Λ → N −9.7 +8.1 +4.4 +3.8 ± 3.2 +2.8 +6.6 ± 3.2 −5.7 ± 2.1

Σ → N +0.8 −3.3 +6.7 +2.3 ± 0.6 +4.1 +6.4 ± 0.6 +2.8 ± 0.2

Ξ → Λ −6.3 +4.4 +6.3 +0.9 ± 2.2 +4.4 +5.3 ± 2.2 −1.1 ± 1.7

Ξ → Σ −9.4 +7.9 +2.5 +3.5 ± 2.6 +1.0 +4.4 ± 2.6 −5.6 ± 1.6

Table 2: Numerical analysis of relative chiral corrections to the hyperon decay vector form factors.

Values are given for each contribution separately and by chiral orders summed up (Sum(3) =

δ(2) + δ(3,1/m) + δ(3,δm), Sum(4) = Sum(3) + δ(4∗)). The corrections are given in per cent (%).

Cov. The numerical results for δ(2), δ(3,1/m), δ(3,δm), and consequently Sum(3) agree with

those of ref. [15], as well as those for δ(2) with ref. [14].

Comparing with model approaches for the SU(3)-breaking corrections in f1(0), we

note that quark models tend to yield small negative corrections of −1.3% [36] or −2.4%

to −2.5% [37] for all decay channels, while an analysis based on the 1/Nc expansion of

QCD [38] yields positive corrections throughout, ranging from +2 ± 2% for Λ → p to

+7 ± 7% for Ξ → Σ. While heavy-baryon χPT up to complete O(p4) also favors positive

corrections, the covariant resummation rather agrees in sign with the quark models in three

out of four channels, see table 2.

We note that the Σ → N form factor is consistently found to receive positive corrections

in table 2, while there is a sum rule argument [39, 40] suggesting the opposite. The latter is

based on the fact that positive contributions are due to states of exotic strangeness/isospin

quantum numbers S = −2, I = 3/2, and the assumption that the sum rule ought to

be dominated by resonances. In sum rule language, the corrections calculated in BχPT

are due to non-resonant multi-particle intermediate states; as the effects of resonances are

subsumed in counterterms, which only start to contribute at O(p5) for the quantity at

hand, the argument given in refs. [39, 40] leads to the expectation that such counterterm

corrections are likely to reduce the positive correction in the Σ → N form factor.

It appears somewhat irritating that the sums of all terms up to (partial) O(p5), Sum(4),

are not at all close to the full covariant results, see table 2, and even opposite in sign in three

out of four channels: the chiral expansion seems to converge very slowly towards its own

covariant resummation. This is a frequent problem in SU(3) BχPT, see e.g. refs. [41 – 43].

We further investigate this issue in the following section by varying the quark masses.

4.3 Chiral extrapolations

In order to investigate the convergence behavior of the chiral corrections to f1(0) and to

test the consistency of our method, we wish to extrapolate the quark masses towards the

chiral limit and see if convergence in the spirit of chiral power counting is retrieved for

smaller masses.

To investigate a meaningful quantity that allows for an intuitive understanding of its

convergence properties, we factor out the symmetry breaking parameter (ms − m̂)2 ∝

– 8 –
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Figure 2: Chiral extrapolations of the hyperon decay form factor for the channels Λ → N , Σ → N ,

Ξ → Λ, and Ξ → Σ, according to eq. (4.7). The yellow (light) band is the region of the fifth order

contribution where we vary the scale between the ρ– and the Ξ-mass. The green (dark) band is the

same variation for the full covariant amplitude.

(M2
K −M2

π)2. As an extrapolation now would diverge in the chiral limit due to the appear-

ance of non-analytic quark mass dependence ∝ m−1
q , m

−1/2
q , and in order to obtain a dimen-

sionless quantity, we additionally factor out a term proportional to 1/[(4πFπ)2(M2
π +M2

K)],

thus making the quark mass dependence of the leading O(p3) symmetry breaking term a

simple constant. We introduce a quark-mass scaling parameter a and reparameterize the

meson masses according to Mφ → √
aMφ. In figure 2 we plot the reparameterized relative

corrections to the vector form factor of all four channels,

∆(a) =

[

a2(M2
K − M2

π)2

(4πFπ)2(M2
π + M2

K)

]−1 (

f1(a, t = 0)

gV
− 1

)

, (4.7)

order by order. We observe improved convergence for smaller quark masses in all four

channels, as expected. As discussed above, the orders O(p5) and Cov include a subleading

dependence on the renormalization scale, which we vary once more in the region between

the ρ– and Ξ-mass, producing bands for these orders. It is obvious, though, that there is
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Figure 3: Chiral extrapolations of the hyperon decay form factor for the channels Λ → N , Σ → N ,

Ξ → Λ, and Ξ → Σ. We show the dependence on m̂/m̂phys for fixed ms. The yellow (light) band is

the region of the fifth order contribution where we vary the scale between the ρ– and the Ξ-mass.

The green (dark) band is the same variation for the full covariant amplitude.

no good convergence towards the covariant result up to O(p5) even for the physical quark

masses (a = 1), let alone at even higher masses.

As a second application of varying quark masses, and closer in spirit to what is needed

for lattice simulations, we increase the (average) light quark mass m̂, keeping ms fixed.

Obviously the convergence of the chiral series becomes rather more problematic for larger

m̂ (or, equivalently, larger pion mass). However, in the symmetry limit m̂ = ms, or

m̂/m̂phys ≈ 25, the corrections to f1(0) vanish quadratically, as can indeed be seen in all

channels and for all chiral orders in figure 3. The qualitative picture is very similar for

all channels except the Σ → N one. Numerically, the covariant results are surprisingly

close to the leading-order calculation. [Note that the bands for the covariant results for

the channels Σ → N and Ξ → Σ stop for m̂/m̂phys . 0.35, where the Σ becomes instable

against strong decay to Λπ, and f1(0) develops an imaginary part.]

4.4 Further comments on the chiral expansion

Let use briefly return to the results of the chiral expansion for the Dirac form factors at
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zero momentum transfer displayed in table 2. First, we note that the corrections taking

either the fourth order heavy-baryon results (Sum(3)) or the full covariant one (Cov) are

in the few percent range, with sizeable corrections from 1/m and baryon mass splitting

insertions in all cases. The importance of these effects makes the covariant scheme — in

which such contributions are resummed to all orders – more reliable than the strict heavy-

baryon expansion. This is also consistent with the experience made in the calculations

of the electromagnetic nucleon [44] and hyperon [31] form factors. It is therefore these

covariant results (last entry in table 2) that should be used in the extraction of Vus from

hyperon semileptonic decays.

5. Weak radii

For the analysis of ongoing and future high-precision hyperon decay experiments, it will

be essential to include the effects of subleading moments in the hyperon decay vector form

factors, first of all the weak magnetic moments f2(0), and the leading t-dependence of f1

as given by the Dirac radii, see eq. (2.2). As a side remark, we note that the complete t-

dependence of the one-loop chiral representation of f1(0) displays very little curvature, such

that the linear approximation of eq. (2.2) is in fact rather precise; compare the discussions

in refs. [31, 44].

In this section we analyze the weak Dirac radii of the semileptonic hyperon decays. Ac-

cording to eq. (3.4), two low-energy constants d51/52 enter the chiral representations of these

radii at third order (and no further constants at O(p4)), which also feature in the electro-

magnetic Dirac radii of the nucleons 〈r2
1〉p/n [31, 45]. The hyperon decay radii are therefore

linked to the latter by low-energy theorems that only contain finite, renormalization-scale-

independent loop effects as corrections:

〈r2
1〉ΛN = 〈r2

1〉p + Lr(ΛN) , 〈r2
1〉ΣN = 〈r2

1〉p + 2 〈r2
1〉n + Lr(ΣN) ,

〈r2
1〉ΞΛ = 〈r2

1〉p + 〈r2
1〉n + Lr(ΞΛ) , 〈r2

1〉ΞΣ = 〈r2
1〉p − 〈r2

1〉n + Lr(ΞΣ) . (5.1)

The remaining loop contributions Lr(BB′) are non-analytic SU(3)-symmetry breaking ef-

fects. A representation according to eqs. (5.1) holds up to corrections of O(p5), where

analytic SU(3) breaking due to quark-mass-dependent counterterms is allowed. Further-

more, up to O(p4) f1(0) as factored out in eq. (2.2) can be set to the symmetry limit. As the

neutron Dirac radius is strongly suppressed compared to the proton one (〈r2
1〉p ≃ 0.60 fm2

vs. 〈r2
1〉n ≃ 0.01 fm2, see e.g. ref. [46]), eqs. (5.1) suggest hyperon decay radii very close to

the proton radius in the SU(3) symmetry limit.

The analytic expressions for the loop corrections of the low-energy theorems tend to

be lengthy, these are collected in appendix A. In table 3 we give the numerical values for

these as well as for the resulting weak Dirac radii in third and fourth chiral order. The loop

contributions at third order tend to be very large, in particular for the channel Ξ → Σ, and

corrections at fourth order are similarly sizeable and tend to be opposite in sign, leading

to large cancellations. For a better assessment of the convergence behavior and a more

reliable prediction, we again show the covariant loop results that consistently resum all
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Channel L
(3)
r L

(4)
r L

(Cov)
r O(p3) O(p4) Cov

Λ → N −0.24 +0.10 −0.16 ± 0.06 0.35 0.70 0.44 ± 0.06

Σ → N +0.31 +0.10 −0.10 ± 0.05 0.92 0.72 0.51 ± 0.05

Ξ → Λ +0.06 +0.05 −0.16 ± 0.03 0.66 0.65 0.45 ± 0.03

Ξ → Σ −0.59 +0.19 −0.12 ± 0.07 −0.01 0.77 0.46 ± 0.07

Table 3: Numerical analysis of the weak Dirac radii squared 〈r2
1〉 (in units of fm2). The columns

L
(3)
r , L

(4)
r , L

(Cov)
r show the SU(3)-breaking loop corrections as defined in eq. (5.1) up to third and

fourth order, as well as the full covariant result (the latter with some residual scale dependence).

The last three columns present the resulting Dirac radii.

the higher-order 1/m and δm corrections. As discussed for the case of f1(0) above, such

partial higher-order corrections induce some residual dependence on the renormalization

scale, which again we vary around 1 GeV, between the masses of the ρ and the Ξ. After such

resummation, all residual loop effects in the radii are negative and of similar (moderate)

size, leading to slightly smaller values for the hyperon decay radii compared to the proton

Dirac radius. The corresponding numbers are also displayed in table 3.

We note that phenomenological model parameterizations [22, 40] frequently assume

a radius term 〈r2
1〉 = 12/M2

V ≈ 0.50 fm2, derived from a dipole parameterization with

MV = 0.97 GeV for all hyperon decay modes, agreeing rather well with the values shown

in table 3. This agreement is accidental, however, as the SU(3) breaking mechanisms are

completely different: the dipole mass MV is obtained by scaling the phenomenological

dipole mass in the nucleon electromagnetic form factors by MK∗/Mρ, while in χPT SU(3)

breaking is entirely due to Goldstone boson loop effects up to the order considered here.

When resumming the loop contributions in a covariant way, sign and size of the effect

agrees with the phenomenological guess.

6. Weak anomalous magnetic moments

Comparably to the weak Dirac radii, the weak magnetism form factor at vanishing momen-

tum transfer f2(0) can be related by low-energy theorems to anomalous magnetic moments

of the ground state baryon octet. For convenience, we will define weak magnetic moments

with a slightly different normalization,

κ =
2mN

m1
f2(0) , (6.1)

where m1 is the mass of the decaying baryon, see eq. (2.1), such that the magnetic moments

κ are given in units of nuclear magnetons.

At leading order O(p2), the magnetic moments κBB′ are just given in terms of the

low-energy constants b12/13, see eq. (3.4), so they can be strictly related to the proton’s

and neutron’s anomalous magnetic moments in analogy to eq. (5.1),

κΛN = gΛN
V κp , κΣN = gΣN

V

(

κp + 2κn

)

,
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Channel L
(3)
κ L

(4)
κ L

(Cov)
κ O(p2) O(p3) O(p4) Cov

Λ → N −0.16 +0.16 +0.27 ± 0.03 1.33 1.17 1.49 1.60 ± 0.03

Σ → N +0.16 +0.01 +0.03 ± 0.01 −1.59 −1.43 −1.58 −1.56 ± 0.01

Ξ → Λ −0.16 +0.07 +0.38 ± 0.05 −0.13 −0.29 −0.07 0.25 ± 0.05

Ξ → Σ +0.15 +0.25 −0.02 ± 0.08 2.45 2.60 2.71 2.43 ± 0.08

Table 4: Numerical analysis of the weak anomalous magnetic moments (in nuclear magnetons).

The columns L
(3)
κ , L

(4)
κ , L

(Cov)
κ show the SU(3)-breaking loop corrections as defined in eq. (6.3) up

to third and fourth order, as well as the full covariant result (the latter with some residual scale

dependence). The last four columns present the resulting anomalous magnetic moments, where the

O(p2) result is calculated from eq. (6.3) with vanishing loop corrections.

κΞΛ = gΞΛ
V

(

κp + κn

)

, κΞΣ = gΞΣ
V

(

κp − κn

)

. (6.2)

Once more gV are the vector couplings defined in eq. (2.6). No loop corrections can occur

at this order.

However, the large number of symmetry-breaking (i.e. quark mass dependent) coun-

terterms contributing to the magnetic moments at fourth order, see eq. (3.5), prevents

a sensible use of a simple low-energy theorem like eq. (6.2). For a discussion of higher-

order corrections to such relations, we therefore resort to relations making use of the

well-measured hyperon magnetic moments, whose chiral representations are also known in

covariant BχPT to the appropriate order [31, 45]. The corresponding low-energy theorems

read

κΛN = gΛN
V

[

1

6

(

5κp + 2κn − 6κΛ + κΣ− − 2κΞ−

)

+ Lκ(ΛN)

]

,

κΣN = gΣN
V

[

1

2

(

κp + 2κn − κΣ+ − 2κΣ−

)

+ Lκ(ΣN)

]

,

κΞΛ = gΞΛ
V

[

1

6

(

2κp + 6κΛ − κΣ+ − 2κΞ0 − 5κΞ−

)

+ Lκ(ΞΛ)

]

,

κΞΣ = gΞΣ
V

[

1

2

(

2κΣ+ + κΣ− − 2κΞ0 − κΞ−

)

+ Lκ(ΞΣ)

]

. (6.3)

The remaining loop effects Lκ(BB′) contain non-analytic symmetry-breaking terms. They

are free of fourth-order low-energy constants, and finite up-to-and-including O(p5), while

our calculation of these corrections is complete up-to-and-including O(p4) only. The cor-

responding formulae for the Lκ(BB′) are collected in appendix B.

In table 4 we present the numerical results, both for the residual loop effects and for

the resulting weak anomalous magnetic moments. All numbers are given to second (no

loop effects), third, and fourth chiral order, as well as the resummation of 1/m effects in

the covariant loop representation. The well-known anomalous magnetic moments of the

ground state baryons are taken as κp = 1.793, κn = −1.913, κΛ = −0.613, κΣ+ = 1.458,

κΣ− = −0.160, κΞ0 = −1.250, κΞ− = 0.349 [47], all given in nuclear magnetons. Again,
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we show the effects of the residual higher-order scale dependence in the covariant loop

corrections by varying the renormalization scale between the ρ– and the Ξ-mass.

Comparing third-, fourth-, and covariant loop order results, we once more observe

partially problematic convergence behavior, with the covariant results not always very

close to their fourth-order approximations. The total residual loop effects are very small

in two channels (Σ → N , Ξ → Λ) and more significant in the other two (Λ → N , Ξ → Σ).

7. Conclusions and outlook

Hyperon semileptonic decays allow for an independent method of extracting Vus, provided

the hadronic form factors involved are sufficiently well-known from theory. In this article,

we have investigated the vector form factors to complete one-loop order in covariant BχPT,

with the following findings:

1. The dominant contribution in the vector matrix elements of hyperon decays is due

to the Dirac form factor at zero momentum transfer, f1(0). Corrections to the SU(3)

symmetry limit of this quantity are of second order in ms − m̂ due to the Ademollo-

Gatto theorem, and are dominated in the chiral power counting by non-analytic loop

contributions. We confirm earlier results [15] when performing the heavy-baryon

expansion of the covariant loop results, and find problematic convergence behavior

of the heavy-baryon series towards the covariant representation.

2. An extrapolation towards smaller quark masses confirms that convergence of the

chiral series is restored, but seems problematic at the physical quark mass values. The

effects of increasing the average light quark mass m̂ at fixed ms are also presented.

3. We have argued drawing upon experience made in earlier calculations of nucleon and

hyperon electromagnetic form factors that nevertheless the corrections obtained from

the covariant one-loop result should be utilized in the analysis of hyperon semileptonic

decays.

4. We have calculated the leading SU(3) breaking corrections to the radius terms of f1(t).

These radii can be related to the electromagnetic Dirac radii of proton and neutron,

and corrections are given in terms of parameter-free loop corrections. While the

convergence behavior is problematic, the full covariant corrections point at somewhat

smaller radii, compared to the proton radius.

5. Furthermore, we have established low-energy theorems that relate the weak anoma-

lous magnetic moments to the magnetic moments of the ground state baryon octet,

valid including leading analytic SU(3) breaking effects. The non-analytic loop cor-

rections to these relations are also calculated to complete covariant one-loop order.

We have not addressed the much more drastic convergence problems found for the

inclusion of decuplet effects in the calculation of f1(0) [15]. A reassessment of these effects

in covariant BχPT [48 – 51] is an important extension of the present work and will be

addressed in a future work [52].
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A. Loop corrections for the weak Dirac radii

In this appendix we show analytic expressions for the residual loop contributions to the

weak Dirac radii, Lr(BB′), as defined in eq. (5.1), to third and fourth order in the heavy-

baryon expansion. The third order contributions read

L(3)
r (BB′) =

(

σηK
BB′ + ρηK

BB′

)

H
(3)
ηK +

(

σπK
BB′ + ρπK

BB′

)

H
(3)
πK +

(

σKπ
BB′ + ρKπ

BB′

)

H
(3)
Kπ , (A.1)

with

H
(3)
ab =

5

2(4πFπ)2

{

M4
a (3M2

b − M2
a )

(M2
b − M2

a )3
log

Mb

Ma
− M2

aM2
b

(M2
b − M2

a )2
+

5

12

}

, (A.2)

and the coefficients σab
BB′ , ρab

BB′ are given in table 5. We decompose the additional fourth

order corrections into 1/m recoil corrections and δm baryon mass splitting corrections

according to

L(4)
r (BB′) = L(3)

r (BB′) + δ(1/m)
r (BB′) + δ(δm)

r (BB′) . (A.3)

The 1/m corrections are

δ(1/m)
r (BB′) = ρηK

BB′ H
(4)
ηK + ρπK

BB′ H
(4)
πK + ρKπ

BB′ H
(4)
Kπ , (A.4)

where

H
(4)
ab =

π

8(4πFπ)2
Ma − Mb

m

24M3
a + 61M2

a Mb + 44MaM
2
b + 11M3

b

(Ma + Mb)3
. (A.5)

The δm corrections read

δ(δm)
r (ΛN) = (D + F )(D + 3F )H ′ΛN

Kπ (mN ) − 1

3
(D2 − 9F 2)H ′ΛN

Kη (mN ) (A.6)

+
2

3
D(D + 3F )H ′ΛN

ηK (mΛ) + 2D(D − F )H ′ΛN
πK (mΣ)

+
1

3
(D + 3F )2H

(5)
ΛN + (D − F )2H

(5)
ΣN ,

δ(δm)
r (ΣN) = (D2 − F 2)H ′ΣN

Kπ (mN ) + (D − F )(D − 3F )H ′ΣN
Kη (mN )

−2

3
D(D + 3F )H ′ΣN

πK (mΛ) − 4(D − F )F H ′ΣN
πK (mΣ)

+2D(D − F )H ′ΣN
ηK (mΣ) +

1

3
(D + 3F )2H

(5)
ΛN + 5(D − F )2H

(5)
ΣN ,

δ(δm)
r (ΞΛ) =

2

3
D(D − 3F )H ′ΞΛ

Kη (mΛ) + (D − F )(D − 3F )H ′ΞΛ
πK (mΞ)

−1

3
(D2 − 9F 2)H ′ΞΛ

ηK (mΞ) + 2D(D + F )H ′ΞΛ
Kπ (mΣ)

+
1

3
(D + 3F )2H

(5)
ΛN + 3(D − F )2H

(5)
ΣN ,

δ(δm)
r (ΞΣ) = −2

3
D(D − 3F )H ′ΞΣ

Kπ (mΛ) + 2D(D + F )H ′ΞΣ
Kη (mΣ)

+4(D + F )F H ′ΞΣ
Kπ (mΣ) + (D + F )(D + 3F )H ′ΞΣ

ηK (mΞ)

+(D2 − F 2)H ′ΞΣ
πK (mΞ) +

1

3
(D + 3F )2H

(5)
ΛN − (D − F )2H

(5)
ΣN ,
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B → B′ σηK
BB′ σπK

BB′ σKπ
BB′ ρηK

BB′ ρπK
BB′ ρKπ

BB′

Λ → N 3
5

1
5

2
5

1
3(D + 3F )2 (D − F )2 2(D + F )2

Σ → N 3
5 1 −2

5 3(D − F )2 7
3D2 − 2DF + 5F 2 −2(D + F )2

Ξ → Λ 3
5

3
5 0 1

3(D − 3F )2 3D2 − 2DF + 3F 2 0

Ξ → Σ 3
5 −1

5
4
5 3(D + F )2 −11

3 D2 − 2DF − F 2 4(D + F )2

Table 5: Coefficients for eqs. (A.1), (A.3), (B.1).

with

H ′AB
ab (m) =

π

(4πFπ)2

{

M2
a +3MaMb+M2

b

(Ma+Mb)3
(mA+mB−2m)− (Ma−Mb)(mA−mB)

2(Ma+Mb)2

}

,

H
(5)
AB =

5π

4(4πFπ)2
mA − mB

MK
. (A.7)

B. Loop corrections for the weak anomalous magnetic moments

Here we give the analytic residual loop contributions to the weak anomalous magnetic

moments, Lκ(BB′), defined in eq. (6.3). The third order contributions can be expressed in

terms of the same coefficients ρab
BB′ given in table 5,

L(3)
κ (BB′) = ρηK

BB′ H
(6)
ηK + ρπK

BB′ H
(6)
πK + ρKπ

BB′ H
(6)
Kπ , (B.1)

with

H
(6)
ab =

m π

(4πFπ)2

{

M2
b + MaMb − 2M2

a

3(Ma + Mb)
+

M2
a − M2

b

2(MK + Mπ)

}

. (B.2)

The additional fourth order corrections are split into terms scaling with second-order low-

energy constants, 1/m recoil corrections and δm baryon mass splitting corrections,

L(4)
κ (BB′) = L(3)

κ (BB′) + δ(4)
κ (BB′) + δ(1/m)

κ (BB′) + δ(δm)
κ (BB′) . (B.3)

These read as follows:

δ(4)
κ (ΛN) = m(3b5 + b6)

[

H
(7)
Kπ + H

(7)
Kη +

8

3
H

(8)
Kπ

]

+ m b7

[

H
(7)
Kη −

4

3
H

(8)
Kπ

]

+

{

κp

4

[

1 −
(D

3
+ F

)2
]

+
4(κp + κn)

9

(

D2 − 3F 2
)

}

[

H
(8)
Kπ + 3H

(8)
Kη

]

,

δ(4)
κ (ΣN) = 3m(b5 − b6)

[

H
(7)
Kπ + H

(7)
Kη +

8

3
H

(8)
Kπ

]

+ m b7

[

H
(7)
Kπ + 4H

(8)
Kπ

]

+
κp + 2κn

4

[

1 − (D − F )2
]

[

H
(8)
Kπ + 3H

(8)
Kη

]

, (B.4)

δ(1/m)
κ (ΛN) = −1

2
(3D2 + 2DF + 3F 2)H

(7)
Kπ − 1

9
(49D2 + 30DF + 57F 2)H

(8)
Kπ

−1

6
(D + 3F )2 H

(7)
Kη + (D2 − 2DF − 7F 2)H

(8)
Kη ,
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δ(1/m)
κ (ΣN) = −1

6
(D2 − 18DF + 9F 2)H

(7)
Kπ +

(

D2

3
+ 10DF − 5F 2

)

H
(8)
Kπ

−3

2
(D − F )2

[

H
(7)
Kη + 2H

(8)
Kη

]

, (B.5)

where

H
(7)
ab =

1

(4πFπ)2

{

4M4
b

M2
b − M2

a

log
Mb

Ma
− M2

a − M2
b

}

, H
(8)
ab = − M2

b

(4πFπ)2
log

Mb

Ma
. (B.6)

The correction terms δ
(4)
κ and δ

(1/m)
κ for the channels Ξ → Λ and Ξ → Σ can be retrieved

from the corresponding ones in Λ → N and Σ → N , respectively, by replacing F → −F ,

b6 → −b6, and exchanging (κp + κn) ↔ κp throughout. Finally,

δ(δm)
κ (ΛN) = −(D − F )(D + 3F )H ′′ΛN

Kη − (D2 − 6DF − 3F 2)H ′′ΛN
Kπ + 2D(D − F )H ′′′

−(D + F )(D − 3F )H
(9)
ΛN − 2D

[

D − F −
(7

9
D − F

)

log
Mπ

MK

]

H
(9)
ΣΛ ,

δ(δm)
κ (ΣN) = −(D − F )(D + 3F )H ′′ΣN

Kη +
(5

3
D2 + 6DF − 5F 2

)

H ′′ΣN
Kπ +

2

3
D(D + 3F )H ′′′

+
(D2

3
+ 2DF − F 2

)

H
(9)
ΛN −

[

D2

3
+ F 2 − 2D(D + F ) log

Mπ

MK

]

H
(9)
ΣΛ ,

δ(δm)
κ (ΞΛ) = (D + F )(D − 3F )H ′′ΞΛ

Kη + (D2 + 6DF − 3F 2)H ′′ΞΛ
Kπ + 2D(D + F )H ′′′

+(D−F )(D+3F )H
(9)
ΛN −

[

3

2
(D2+F 2) + DF−2D

(7

9
D+F

)

log
Mπ

MK

]

H
(9)
ΣΛ ,

δ(δm)
κ (ΞΣ) = (D + F )(D − 3F )H ′′ΞΣ

Kη −
(5

3
D2 − 6DF − 5F 2

)

H ′′ΞΣ
Kπ +

2

3
D(D − 3F )H ′′′

−
(D2

3
− 2DF − F 2

)

H
(9)
ΛN − (D − F )

[

1

2
(D − F ) − 2D log

Mπ

MK

]

H
(9)
ΣΛ , (B.7)

with

H ′′AB
ab =

m

(4πFπ)2
mA − mB

M2
b − M2

a

{

1

4

(

M2
a + M2

b

)

− M4
b

M2
b − M2

a

log
Mb

Ma

}

, (B.8)

H ′′′ =
m

(4πFπ)2
M2

π + M2
K

M2
π − M2

K

log
Mπ

MK
(mΣ − mΛ) , H

(9)
AB =

m

(4πFπ)2
(mA − mB) .
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